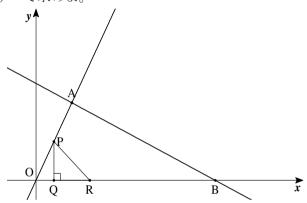
難関私立の高校受験問題

範囲:小問集合 難易度:★★★★+ 得点 /25

出典: 2021 年度 西大和学園高校(高校受験)

次の各問いに答えよ。


(1) x の 2 次方程式 $x^2 - 3x - 5 = 0$ の 2 つの解を a, b とする。 このとき、 $a^2 + b^2 - 3a - 3b + 1$ の値を求めよ。

(2) x, y についての連立方程式

$$\begin{cases} \frac{4}{x} + \frac{3}{2y} = 2\\ \frac{8}{x} - \frac{1}{y} = \frac{10}{3} \end{cases}$$
を解け

(3) 大、中、小 3 個のさいころを同時に投げる。大のさいころの目をa、中のさいころの目をb、小のさいころの目をcとし、aを百の位、bを十の位、cを一の位としてできた 3 けたの数を X とする。X が 6 の倍数でない確率を求めよ。

(4) 下の図のように、直線 $y=-\frac{1}{2}x+5$ と直線 y=2x との交点を A、x 軸と の交点を B とする。点 P は、O を出発し、直線 y=2x のグラフ上を O から A まで動き、次に直線 $y=-\frac{1}{2}x+5$ のグラフ上を A から B まで動 C0 を C1 を C2 を C3 を C3 を C4 を C5 を C5 を C5 を C5 を C6 を C7 を C7 を C8 を C9 を C

(5) a は 50 以下の素数とする。 \sqrt{a} の整数部分を b とし、小数部分を c と するとき、 $\left(\sqrt{a}+b\right)c=4$ が成り立つ。この式をみたす a の値をすべて求めよ。ただし、ある正の数 x に対して、 $n \le x \le n+1$ をみたす整数 n を x の整数部分といい、x-n を x の小数部分という。

【解答例】

$$x^2 - 3x - 5 = 0$$
の 2 つの解が a , b なので, $x^2 - 3x - 5 = (x - a)(x - b) = x^2 - (a + b)x + ab$ 係数を比較し, $a + b = 3$, $ab = -5$ $a^2 + b^2 - 3a - 3b + 1 = (a + b)^2 - 2ab - 3(a + b) + 1 = 9 + 10 - 9 + 1 = 11$

【コメント1】

解と係数の関係を使う問題。どう考えても本来は高校範囲。私立だから 仕方ないか。高校生には余裕な問題(北海道の高校生は7割解けない)。一 部の塾用ワークには載っていたりする。公立入試では出せない問題。

解と係数の関係 2 次方程式 $ax^2 + bx + c = 0 (a \neq 0)$ において,

解が α, β であるとき, $ax^2 + bx + c = a(x - \alpha)(x - \beta)$ と因数分解できる。 $a(x - \alpha)(x - \beta) = ax^2 - a(\alpha + \beta)x + a\alpha\beta$ であるから, 係数を比較して,

$$\begin{cases} -a(\alpha+\beta) = b & \text{tht}, \quad \alpha+\beta = -\frac{b}{a} \\ a\alpha\beta = c & \text{tht}, \quad \alpha\beta = \frac{c}{a} \end{cases}$$

例えば、 $x^2 - 3x - 40 = 0$ を解くとき、(x - 8)(x + 5) = 0 x = 8, x = -5 と解くが、確かに $8 + (-5) = -(-3), 8 \times (-5) = -(-40)$ となっている。

 $x^2-3x-5=0$ の解は、 $x=\frac{3\pm\sqrt{29}}{2}$ であるが、上記と同じように計算できる。

$$\frac{3+\sqrt{29}}{2} + \frac{3-\sqrt{29}}{2} = 3, \left(\frac{3+\sqrt{29}}{2}\right) \left(\frac{3-\sqrt{29}}{2}\right) = \frac{1}{4}(9-29) = -5$$

$$\alpha + \beta$$

$$\alpha\beta$$

(2) 中学生難易度:★★★★★ 高校生難易度:★★☆☆☆

$$\begin{cases} \frac{4}{x} + \frac{3}{2y} = 2 \dots 1 \\ \frac{8}{x} - \frac{1}{y} = \frac{10}{3} \dots 2 \end{cases} \quad \text{if } x \ge 7 \quad \frac{8}{x} + \frac{3}{y} = 4 \dots 3$$

③ - ①より、
$$\frac{4}{v} = \frac{2}{3}$$
 $4 = \frac{2}{3}y$ $y = 6$ ①に代入して、

$$\frac{4}{x} + \frac{1}{4} = 2$$
 $\frac{4}{x} = \frac{7}{4}$ $4 = \frac{7}{4}x$ $x = \frac{16}{7}$

【コメント2】

分母に文字が入っているので、中学生はもちろん、大半の高校生(北海道の高校生の8割)にとって難しい問題。ただ、札幌市の文教地区ならこれぐらいの問題出されてそう(文教地区の問題あまり見たことないけど)、嫌だねー。北海道の入試では出せない問題。

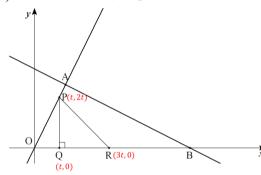
(3) 中学生難易度:★★★★★ 高校生難易度:★★★☆☆

Xが6の倍数であるとき、Xは2の倍数かつ3の倍数なので、

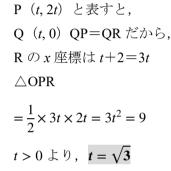
- ① c が 2 の倍数 (c=2,4,6) ② a+b+c が 3 の倍数
- ※ 2の倍数の見分け方→1の位が2の倍数
- ※ 3の倍数の見分け方→各位の数の和が3の倍数

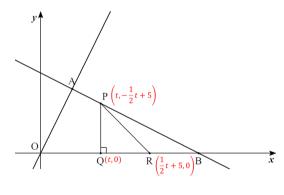
I)c=2 のとき, a+b=4,7,10 II)c=4 のとき, a+b=2,5,8,11

III)c=6 のとき、a+b=3,6,9,12 a と b の組み合わせは以下の通り。


4	7	10	2	5	8	11	3	6	9	12	合計 36 通り
1-3	1-6	4-6	1-1	1-4	2-6	5-6	1-2	1-5	3-6	6-6	となる。よっ
2-2	2-5	5-5		2-3	3-5	6-5	2-1	2-4	4-5		て6の倍数に
3-1	3-4	6-4		3-2	4-4			3-3	5-4		ならないの
	4-3			4-1	5-3			4-2	6-3		は、216-36
	5-2				6-2			5-1			=180 通り
	6-1										$\frac{180}{216} = \frac{5}{6}$
											216 6

【コメント3】


高校入試のルール違反ではないが、普通に面倒で難しい問題。倍数の見分け方は、中学入試や整数問題、どこかで学んだはず。学んでなくても倍数見分け問題は公立でも平気で出る。


(4) 中学生難易度:★★★☆☆ 高校生難易度:★★☆☆☆

I)PがOA上にいるとき

II)Pが AB上にいるとき

$$R \mathcal{O}_{x}$$
座標は

$$t + \left(-\frac{1}{2}t + 5\right) = \frac{1}{2}t + 5$$

$$\triangle$$
OPR

$$= \frac{1}{2} \left(\frac{1}{2}t + 5 \right) \left(-\frac{1}{2}t + 5 \right)$$

$$= \frac{1}{2} \left(25 - \frac{1}{4} t^2 \right) = 9$$

【コメント4】

5 問の小問集合の中では、最も一般的な問題。よく公立高校の関数の問題で出題されそう。

(5) 中学生難易度:★★★★☆ 高校生難易度:★★★☆☆

$$\sqrt{a} = b + c \downarrow 0$$
, $\sqrt{a} - b = c$

$$(\sqrt{a}+b)c = (\sqrt{a}+b)(\sqrt{a}-b) = a-b^2$$

 $a-b^2=4$ となり、 $a=b^2+4$ a は 50 以下の素数で、 \sqrt{a} の整数部分が b であることに考慮すると、

а	b^2	
5	1	整数部分ではない
8	4	素数じゃない
13	9	0
20	16	素数じゃない
29	25	0
40	36	素数じゃない
53	49	50 超えている

よって求める a は.

a = 13, 29

【コメント5】

数 IA で出てきそうな問題。訓練された 中学生なら難なく解けそう。逆に、高校生 も気づかなかったら苦戦しそう。

【コメント6】

やはり、東大京大に 140 名ぐらい合格者を送り出す高校(中高一貫校)は、小問集合も難しい!高校知識が前提となっている問題が多いです。でもこんなにその知識が前提となっている高校入試問題は、私初めて見ました。もっと色々な高校の問題がみてみたいものです。

【作成】

高校入試 数学 良問・難問 https://hokkaimath.jp/